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Introduction

Over the past several years there has been a continu-

ing discussion in the literature concerning the relative

merits of dispersion-based (gratings, prisms, or other)

spectrometers versus interference-based implementa-

tions. In general the interference-based instruments offer

higher throughput than the grating instruments but have

offsetting peculiarities, such as wavelength ambiguity or

spectrum transform outputs.

An active dialog has existed both in and out of the

literature between advocates claiming superiority for one

or another technique. Recently, still another implementa-

tion of the interferometric technique has appeared.

Called the digital array scanned interferometer (DASI)

(refs. 1-4), the new technique is designed to make use of

the interferometer advantages. (Earlier versions, devel-
oped or proposed, include the photodiode array Fourier

transform spectrometer (PAFS) of ref. 5, and the interfer-

ometric diode array spectrometer (IDAS) of ref. 6.)

The DASI serves as the focus of this paper because it

is a recent entry in the field of interferometer implemen-
tations and is claimed to have major benefits for certain

NASA multispectral imaging applications. Although the

claims for DASI have been presented in various ways,

they can be grouped into three general categories with

corollaries. The claims are that (1) DASI has a much

higher 6tendue than grating spectrometers, (2) DASI's

have an optimum instrument sampling function, and (3)

DASI possesses several smaller systems-level capabili-

ties. Some of the systems-level capabilities are the

Fellgett (or multiplex) advantage, wavelength linearity,

and well-known and easily correctable system errors,

among others.

This paper reviews the operational principles of

interferometric and dispersive spectrometers and pre-

sents the various claims for DASI. The paper assesses the

DASI claims with respect to the operational principles

presented to determine whether those claims can be sub-

stantiated. Finally, the results are summarized to serve as

a guide to help determine what role DASI's might play in

appropriate applications.

Overview of Spectrometer Principles and

Characteristics

A monochromator or spectrometer takes selected

incoming radiation and spatially disperses that radiation

into spectral components that can be individually identi-

fied. This process can be accomplished in several ways,
but the most common methods are broadband filters,

direct measurement by means of wavelength dispersion,

and indirect measurement by some transformation pro-

cess. This paper addresses only the dispersion and trans-

formation techniques. The material in this development

depends heavily on that of Jacquinot (ref. 7).

Luminosity, l_tendue, and Resolving Power

Of importance to any spectrometer implementation

are the resolving power and the luminosity. Resolving

power (or resolvance) is given by 91 = 3./A_, and lumi-

nosity is given by the ratio of the detected power to the

available power for that measurement.

For luminosity, the governing parameter is the

_tendue, which represents the size and angular con-

straints on the amount of energy an optical system can
pass. l_tendue is given by the product Af2, where A is the

area of the optical aperture and £2 is the solid acceptance

angle of the same optics. This equation is simply a direct
consequence of the conservation of energy in an optical

system: • = BxAf2. In this equation, B represents the

brightness, or spectral radiance, of the source, and _ rep-

resents the system transmission. Furthermore, _' < _,

where _' is the flux of subsequent optical stages.

The desired goal is to have maximum flux at maxi-

mum resolving power. However, there is usually a trade-

off between resolving power and angular acceptance.

One often must sacrifice resolution to achieve higher

signal throughput.

Grating Spectrometers

Dispersion spectrometers have two general imple-

mentations: prism and grating. In either case, a spectrum

is determined by illuminating a slit by some source, pass-

ing the light through the prism, or reflecting or transmit-
ting the light via a grating. The resulting light then

illuminates an exit slit, detector, or detector array. In

most prism and grating systems, the entrance slit is

imaged onto the exit slit or detector array by the colli-
mating and imaging optics with allowance for any

required scale adjustment.

For the prism, the light is refracted differently as a

function of wavelength, giving different exit angles. A

detector or slit, defining an exit angular subtense,

receives energy from a restricted wavelength range.

Changing the slit location or detector location in some

uniform way yields a spectrum whose resolution depends
on the entrance and exit slit widths. The prism fails to

perform its function as its index ceases to have a varia-

tion with wavelength, a case for many transparent mate-

rials at long wavelength. Available signal-to-noise ratio

depends on the amount of energy at the detector, with

decreasing slit widths yielding reduced energy. Resolu-

tion, on the other hand, increases with decreasing
slit widths, giving the fundamental trade-off of

signal-to-noise ratio versus spectral resolution. Because



the prism generally is considered inferior to the grating,
it will not be considered further.

The grating spectrometer, illustrated in figure 1,

appears similar to the prism in implementation, but oper-

ates by means of an entirely different principle. The dis-

persion in a grating comes from an interference effect

generated by reflection from a parallel pattern of grooves

or refraction from a pattern of index modulation in trans-
mission.

Fore optics Monochromator

Lens Lens Lens

Entrance Grating • Exit slit
slit • Transmissive • One detector

• Reflective • Detector array

Figure 1. Grating spectrometer.

For the more efficient and common reflection grat-

ing, the condition between the incidence angle and the

exit angle that yields constructive interference is

d sinOi + d sinO e = n_,

where d is the groove spacing, _, is the wavelength, 0 i

represents the entrance angle, 0e represents the exit

angle, and n represents the order of the interference. The

order of the dispersion refers to the fact that the grating

can give constructive interference as long as the path
lengths are in integral multiples of one wavelength. Typ-

ically, the first order is the strongest, but by "blazing" the

grating, either certain wavelengths or orders can be

enhanced. Notice that half the wavelength at the second
order gives the same constructive interference and condi-

tions on angles as the first order. Gratings, therefore,

require bandpass filters, "order-sorters," that limit the

incoming wavelengths to some broad band without the

possibility of higher orders coming through. Detectors

with specific spectral ranges sometimes can eliminate the
need for order-sorters.

As with the prism, the grating spectrometer images
the entrance slit onto the exit slit or onto a detector

(array). In the case of the exit slit, moving the slit so that

it covers the range of angles required generates a spec-

trum. Rotating the grating gives the same effect. A detec-

tor array simultaneously samples the entire spectrum, if

the array is large enough.

Again, as with the prism, a combination effect of the

entrance slit angular width and that of the exit slit or

detector element sets the resolution. The spectral resolu-

tion increases with decreasing slit or detector widths,

while the energy detected goes down, again, in a fashion

similar to that of the prism.

It is important to note that the effect of the slits (or

slit and detector aperture) can be modeled in the follow-

ing way. Given a monochromatic source filling the

entrance slit, the optics form an image of the slit at a

location on the exit image plane consistent with the grat-

ing equation shown previously. As an exit slit is scanned

across the image, a detector first records a signal that

increases, perhaps stays constant for a bit, and then drops

off to zero. Analytically this signal pattern equals the

convolution ® (ignoring the effects of imperfect optics):

S(O e) = rect(kOila ) ® rect(Oelb )

where S(Oe) is the exit signal, a represents the half-width
of the entrance slit, b represents the exit slit half-width,

and k represents any scale factor between the entrance

and exit optics.

The case differs slightly for a detector array. The

detector array represents a set of spatial or angular sam-
pies, and if the detectors are fine enough, an output simi-

lar to the exit slit is obtained. Imagine that the detector

signals are read in groups whose total angular subtense

equals that of the exit slit already discussed. Imagine fur-

ther that a spectrum is developed by moving along the
detector array one detector at a time. This method is

equivalent to using the exit slit with tiny, but discrete

steps. Clearly the two cases yield similar results. In addi-

tion, from reference 7, the maximum resolution-energy

product occurs for exit and entrance slits (or images) that
are matched.

The effect of a polychromatic source is then a convo-

lution of the monochromatic exit response with the

source spectral distribution, all referenced to the exit

region. It is very important to note that any spatial vari-
ability in the entrance slit is transformed to the exit slit

according to the spectral content. In addition, a grating

has dispersion only in the one dimension, while along the

nondispersive direction the grating acts as a mirror.

As stated by Jacquinot (ref. 7), the relationship be-

tween energy throughput and resolution for a grating

monochromator can be developed as follows. Matching

the spectral width of the input and exit dispersions eqlD l

and o_21D2 (where D = dOlarL) yields the highest through-
put. Given this condition, the limiting resolution _, of



themonochromatoris _2/D2 (= Oil/D1). The maximum

flux being detected is then

do = xBS_

where S is the area of the grating normal to the input flux,

B is the source spectral radiance, x is transmission, and f_
is the solid acceptance angle at the grating.

Alternatively, with the value I_ representing the ver-

tical slit angular extent and 0_2 representing the disper-

sive direction angular extent,

do = xBSot2_J

do = xBS_,_D21_R

where resolving power is given by _R = L/_5_.. This result

says that output flux is inversely proportional to resolv-

ing power, expressing analytically what was alluded to
earlier.

In a typical case of a high-throughput system, e.g., a

Littrow mounting, SD 2 = (2A sin_)/_., where A is the area

of grating and _ is angle in incidence. This allows the
final result

do = xB2AfJ( sin_ )l_R

For the grating with fixed resolution and collimating

optics diameter, increased energy throughput can only

come by increasing the slit size in the nondispersion

direction. Jacquinot states: "Practical limitations restrict

the acceptance angle 13to about 0.1 radian" (ref. 7). More

modern system designs may improve on this value, but

the conclusion is still valid as a practical baseline.

Interferometers

To compare the performance of the current DASI

interferometers with their grating competitors, one must

start somewhere near the beginning of interferometers as

instruments, e.g., the Michelson interferometer, and then

move on to the variations leading to the DASI. The mate-
rial here follows reference 8.

In certain situations, it is possible to see interference

fringes from nearly monochromatic light, and in some

cases, white light over restricted ranges. It is difficult to

achieve fringes from broadband light for the simple rea-

son that broadband light, though intense enough, repre-

sents a linear superposition of interference from many

spectral bands that hopelessly overlap and wash out the

fringes. Moreover, light arising from different areas of
the source is uncorrelated, so increasing the source size

does not usually intensify the fringes. Making the light

quasi-monochromatic enough by reducing the bandwidth

by filtering results in a lack of sufficient light in the wave
band of interest. If extended sources are used to increase

the available light, existing fringes are generally "washed

out" because the extended sources cause overlap of the

fringes. Fringes may still be visible, but they may
become localized.

If a partially reflecting mirror and set of reflecting

mirrors are arranged so that light passes in two different

legs (fig. 2), one or both of which have adjustable path

lengths, the result is the Michelson interferometer. The

partially reflecting mirror divides the light into two

(equal) amplitude components, each of which recom-

bines with itself at some exit plane. Following the path

from any point on an extended source for the Michelson,

one finds fringes formed by the interference of all paral-
lel rays from all parts of the source. The apparent loca-

tion of these fringes is at infinity. In reality the fringes

form behind a lens focused at infinity. Because each bun-

dle of rays from the source splits in two and all rays that

are parallel to one another come to a focus together,

yielding what are called "fringes of equal inclination,"

they are said to be "localized at infinity." All regions

have matched ray pairs regardless of the size of the
source. Thus, the Michelson interferometers, and some

relatives, have the characteristic of their fringe visibility
being unaffected by sensible source size extension. The

intensity of the fringes goes up, while their contrast

remains high.

Extended
source

Len s

Mirror 1

Possible

Beam scanning
splitter

Mirror 2

Detector(s)

Figure 2. Michelson interferometer.

The Michelson operates by having one of its plates

displaced so that the distance traversed in one leg is

longer than the other. Fringes for the Michelson take the

form of concentric rings whose spacing varies inversely
as the square of the angle from the central fringe or ring.

As the distance in one leg varies, the fringes contract or
expand from the center.

Placing a detector at the fringe center, illuminating
the interferometer with narrow band radiation, and



varyingthepathlengthdifferential in some linear fashion

with time yields a sinusoidal pattern. Polychromatic radi-

ation yields a linear sum of sinusoids whose period is

determined by wavelength and path length difference.

The overall effect is to generate a cosine Fourier trans-

form of the source spectral content linear in wave num-

ber. Note that out along the fringe plane (in the focal

plane of the lens) the same Fourier transform exists,

although with a nonlinear scale. The Michelson interfer-

ometer, with its ability to accept large source sizes, has a

considerable advantage as a nonimaging spectrometer, as
will be seen later.

Important Result: Note carefully that the corollary to

the wide acceptance angle for fringes of equal inclination

in the Michelson is the loss of spatial information. With

the exception of a source at a great distance, all parts of

the source are distributed uniformly in the rings, and spa-
tial detail is lost.

Another property of the Michelson is important in

understanding the DASI. If the mirrors on the Michelson

are set at zero differential path length, but cocked at a

small angle, the fringes become nearly parallel and are

aligned along the apex of the virtual air wedge formed by
the two mirrors.

If the Michelson is carried one step farther, an inter-

ferometer that has linear fringes can be formed (the Sag-

nac interferometer illustrated in fig. 3). In the Sagnac,
there is a beam splitter as before; however, the divided

light is directed not back at the beam splitters from which
it came but to the twin mirror in the interferometer. This

configuration causes the resultant twin rays to traverse

nearly the same path but to be displaced laterally. Thus,

the light appears to come from two laterally displaced

parallel sources to yield fringes of equal inclination
localized at infinity. However, unlike the Michelson, the

Sagnac fringes are parallel lines and not concentric

annuli. Like the Michelson, the Sagnac has high fringe
visibility with extended sources.

Moving one of the plates in or out from some point

of approximately equal distance generates a Fourier

transform in the Sagnac. A monochromatic source would

produce a linear fringe pattern or, in a detector moving

across the pattern, a sinusoidal signal dependent on the

wavelength of the source and the movement of the plates:

S(x) = _S(o){ 1 + cos[2n(sin0)t_L] }d_

S(x) = fS(o)[l + cos(2nxt_L/f)]do

where S(x) is the detected signal, L is 4r2 times the mir-

ror displacement, 0 is the lens incidence angle, f is the

lens focal length, x is the distance in the focal plane, and

is the wave number. Other than the constant term, the

Mirror 1

Extended _ Ssource can

irror

Detector _ Lens

a.ay , ,\l/.,,
Illlmllll

I II
Linear fringes

Figure 3. Sagnac interferometer.

detected signal is then proportional to the cosine trans-

form of the source spectral distribution.

For the Sagnac and some other interferometers with
parallel fringes, it is obvious that a detector array could

sample the fringes. With the inherent transform scale lin-

earity of the Sagnac-type implementations, interpretation

would be simplified with respect to a Michelson.

A worthwhile digression here considers the two

alternative implementations for Michelsons, Sagnacs,
and others. Material presented earlier noted that Michel-

sons could have sources of large extent without reducing

fringe visibility. When operated in this fashion, the

fringes are localized at infinity and distributed over a

plane behind a lens focused at infinity. An alternative

implementation, the Twyman-Green interferometer in

figure 4, results when the Michelson is illuminated by a
collimated source of finite, but small, angular subtense.

In this case the annular fringes are compressed into a
region set by the angular subtense of the source size. An

interference pattern is generated by moving the plates

and observing the detector output. The latter case is

appropriate for a single detector, whereas the extended

source case would be appropriate for a detector array of

concentric annuli. In both cases, the mirror plates of the

interferometers generate fringes that appear to be local-

ized at infinity. If the plates of the interferometers are

close to zero displacement and cocked to generate non-

parallel exit rays, the fringes become localized in the

virtual wedge formed by the mirrors.

The relationship quantifying interferometer resolu-

tion and throughput can be found by following Jacquinot

(ref. 7). Two cases are noted, one developed by Jacquinot

in reference 7 and one by Vanasse and Sakai (ref. 9).

Both are related and important to DASI. Jacquinot based

his resolution argument on a Fabry-Perot etalon, with
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Figure 4. Twyman-Green interferometer.

further discussion in reference 7. He did not present a

direct analysis applicable to the DASI case. Vanasse and

Sakai discuss the finite aperture case for the collimated

Michelson (Twyman-Green) interferometer and devel-

oped the following result. Given the circularly symmetric

acceptance half-angle ct S, the relationship to resolvance
9_ can be written (ref. 9) as

2ot S =

2
Noting that f2 is nOts, the relationship becomes

= 2nl9_

This analysis is based on the fact that, as the incident

light is allowed to move off axis by an extended source, a

phase shift develops that is dependent quadratically on

the off-axis angle. Setting this developing phase shift

equal to rt/2 gives the desired relationship. The relation-

ship between resolution and solid angle expresses analyt-
ically the advantages of interferometers. Because

&endue is set by the entrance pupil, usually some tele-

scope in our case, it is of great advantage to have the

spectrometer match the 6tendue of the front optics. For

mirrors and lenses, the 6tendue of optics viewing an

extended source can be much larger than that which is

compatible with a grating monochromator. The prism

monochromator is even less capable than the grating sys-

tem. This front-end optics and monochromator mismatch

presents less of a problem for point sources below the

resolution limit for the front-end optics because the 6ten-
due is forced to be small.

Important Result: Both angular dimensions of the inter-

ferometer entrance solid angle can contribute energy to

the interferogram. On the other hand, the spectral resolu-

tion reduces only weakly from the angular subtense. As

shown for the grating monochromator, one angular

dimension trades resolution directly for greater angular

acceptance. The other dimension (_ in the grating equa-

tion) can be increased only to a value of about 0.1 rad.

Thus, the throughput advantage of interferometers over

gratings is approximately 3.4/_i (ref. 1), or about 34 for

the best grating monochromators.

When required to perform as both spectrometer and

imager, the interferometer must sacrifice some of its

6tendue advantage, as described in the following.

Parallel fringes, such as those caused by a thin air

wedge, appear to come from areas of equal optical thick-

ness and are called "fringes of equal thickness." The ter-

minology "fringes of equal thickness" appears to

originate from Fizeau fringes or Michelsons with inclina-

tion in the mirrors. In the Sagnac, fringes do not arise

from contours of equal thickness but from laterally dis-

placed beams or sheared source images whose differen-

tial path length varies with angle.

Resolution reduction in the Sagnac comes in a

related though significantly different fashion from that in

the Michelson. Any detector that spans a significant part

of a fringe yields a signal with reduced modulation. Res-

olution reduction affects a particular wave number and

those above, whereas lower wave numbers are less

affected. Thus, in this case as well as for the Michelson,

resolution reduction is less clear-cut in interpretation

than might be desired.

The Sagnac also has an acceptance angle effect that
yields blurring in the interferogram similar to that arising

from a finite detector size (as shown in appendix A). The

effect comes from the fixed lateral displacement of the

two apparent sources in the presence of increasing accep-

tance angle for a Sagnac with the source near the optics

focal point. In the Twyman-Green case, a similar effect

occurs coupled with a defect of focus impact that can

limit performance. Taken together, either the detector

size or acceptance angle geometric effects yield an

equivalent inverse resolvance versus (linear) acceptance

angle trade-off. Reducing detector size only increases

resolvance (without regard to signal-to-noise consider-

ations) up to the point where the blurring effects

predominate.

In system modeling terms, the resolution reduction

corresponds to multiplying the reconstructed source

spectrum by a term of the form (sinx)/x (sinc function)

whose first zero is set by the reciprocal of the angular

subtense of the detector or angular blurting combination,

5



whichever comes first. As shown in appendix A, the sine

function corresponding to a finite aperture size of angular

dimension ¢x causes the reconstructed spectrum to be

multiplied by a sine function whose first zero occurs at

a = Ills, where l is the path difference.

For interferometers, the maximum modulation

frequency sets the ultimate resolution in the transform

process. This maximum modulation, in turn, comes from

the maximum phase differential. The reconstructed trans-

form is convolved with (smoothed by) a sine function

whose half-width is _x5 = Ill 0ma x.

Therefore, the resolvance can be written as

9_ = ol_a = 20max/_< 2_/_

where the maximum resolution is limited by the total

possible acceptance half-angle x. Note the result is simi-

lar to that of the Michelson except the angle is not the

solid angle subtended by the detector or other spatial

integrating effect.

Important Result: For the Sagnac and similar interfer-

ometers, the spectral resolution is not inversely related to

the acceptance solid angle. Rather, the resolution is

inversely related to a single-dimension angle only.

Therefore, the 6tendue for a square pixel Af_ is inversely

proportional to the resolution squared--a very different
result from that of the Michelson interferometer.

DASI Implementations

As noted earlier, linear fringe interferometers using

detector arrays existed before the current DASI version

(refs. 5 and 6). The common element in the implementa-

tions consists of some interferometer form that yields

linear fringes plus a linear detector array. Thumbnail

descriptions of some representative DASI versions that

have been proposed follow.

Figure 3 shows a Sagnac form of DASI in which the

light traverses a common path after being amplitude

divided at a beam splitter. If the mirrors are set at

unequal distances from the beam splitter, two laterally

separated apparent sources arise. The apparent sources

produce linear fringes at the back focal plane of the

imaging lens; therefore, they are said to be "localized at

infinity." There is no limitation perpendicular to the

detector array except the size of the beam splitter lens-
mirror combinations.

Another implementation of a DASI, illustrated in

figure 5, uses birefringent prisms. Several versions utiliz-

ing birefringence are possible, but all are similar to the

one using the Wollaston prism. In the Wollaston form,

light is collimated from a source and passes to a prism
made of two pieces of crossed birefringent material.

Ordinary (o) and extraordinary (e) rays are split by a

small angle in the prism. The rays are split across the

entire height of the prism, with the effective path length

difference between the rays approximately linearly
related to a position along the height of the prism. The

rays appear to be "localized" in the prism near the inter-

face between the two halves. The rays are brought to a

focus by a second lens with the linear detector array in

the focal plane. Cylindrical lenses can be used to con-

dense the parallel fringes onto the array for better signal-
to-noise-ratio.

Telescope

Field lens

f._ + slit

Reimaging +
cylindrical lenses --

Collimator 7 Detecto

Quartz I r_/_

- / C_ _'spectral

Figure 5. DASI with Wollaston prism configuration.



Table 1.Various Claims of Performance Advantages for the DAS1 System

1. Much higher 6tendue for equal resolution (ref. 2, p. 5)

10x-100x greater signal to noise at equal field of view (ref. l, p. 418)
Transmits more than 1000x more photons at same resolution and equal apertures (ref. 2, p. 5)
l_tendue greater than 1000x at given spectral resolution and equal aperture (ref. 2, pp. 5 and 10)

Corollary: Can trade 6tendue for more compact size? (ref. 2, p. 10; ref. 3, p. 2).
Corollary: Field-widened versions have accentuated advantages (ref. 2, p. 5; ref. l, p. 421).

2. Data has optimum sine instrument sampling function (ref. l, p. 419).
Frequency response is a rectangle (ref. 2, p. 5).
Corollary: DASI has 3x resolution factor or more (ref. 2, p. 6).
Corollary: Due to 3x resolution and sine function, one-third the number of samples are required (ref. 2, p. 10).
Corollary: Due to one-third samples, DASI achieves high signal to noise or higher resolution for same data volume (ref. 2, p. 10).

3. Miscellaneous systems level advantages
System errors are known and correctable (ref. 2, p. 11 )
Superior linearity, throughput, dynamic range, spectral range, and fidelity (ref. 3, p. 2)
Can use heterodyning (ref. 1, p. 419)
Constant (wavelength) efficiency (ref. 1, p. 419)
Transient event detection capability (ref. 2, p. 9)
Multiplex advantage (ref. 2, p. 2)

DASI Claims

The collected literature, published and unpublished

for DASI (refs. 1-4), has been surveyed for the claims

made for DASI. Because there is considerable repetition,

the claims have been collected into three main groups

that capture their essence (table I).

Three major claims can be summarized as follows:

(1) more throughput for a given resolution, (2) a better

system response function, and (3) more benign system

characteristics, including the multiplex advantage.

Claim 1--Higher l_tendue

Claim 1 refers to the known fact that higher 6tendue

is available in Michelson interferometers when compared

with grating spectrometers. As noted earlier, Jacquinot

(ref. 7) developed a comparison between Fabry-Perots

(F-P) and grating monochromators that showed that the
ratio in throughput could be expressed as

F-P/grating ---3.4/13

References 9 and 10 further show that this result also

holds for interferometers, such as Michelsons and others

that generate annular fringes, as well as for Fabry-Perots.

In an implementation that takes advantage of the

properties of interferometers or gratings, the design
would attempt to set the instantaneous field of view

(IFOV) with some foreoptics and utilize the largest mir-

ror or lens that is compatible with practicality con-
straints. Because the 6tendue is constant, a small IFOV

could be converted by magnification to something com-

patible with the resolution of the interferometer. Magni-

fication reduces the area required in the interferometer or

grating and increases the IFOV. Because resolvances of

at least rSeveral tens or a few hundreds would be

employed, the angular subtense would be from one to a
few tenths of a radian, consistent with considerable scal-

ing gain. Large-diameter foreoptics with small IFOV's

are natural companions to smaller area spectrometers

with moderate spectral resolution. For matched areas

and resolutions, the interferometer offers approximately

30 times the throughput of the grating. The increased

throughput can be used to increase the signal-to-noise
ratio, to reduce size, or for a combination of both. (It

should be noted here that in the photon-noise-limited

applications usually addressed in the literature, the

signal-to-noise gain from the throughput advantage

would be around 5.5.) Linear dimension gains will be far

less impressive in photon-noise-limited cases. Still, the
diameter of the grating system would have to be

5.5 times greater than that for the interferometer in the

photon noise case.

As shown in appendix A for Sagnacs (or Twyman-
Greens with wedged mirrors) producing parallel fringes,

the relationship between resolving power 9_ and accep-

tance angle is different from the Michelson case. Either

the size of the detector angular subtense or the fringe

contrast reduction from increased acceptance angle

"blurring" causes a reciprocal relationship of the resol-

vance and acceptance angle. This is quite a different case

from the Michelson or Twyman-Green case with parallel

plates. Moreover, as shown in appendix A, there are
additional effects from defocus on the higher spatial



frequencycomponentsof the transformfor the
MichelsonandTwyman-Green.TheWollastonversion
caseis similarwhenonerealizesthattheWollastonis
equivalentin asystemssensetoaTwyman-Greenwith
wedgedmirrors.

Giventheseconsiderations,theratioof Sagnacinter-
ferometertogratingmonochromatordetectedpowercan
bewritten:

Sagnac/grating=(2_x' BA _s/9_ ) (BA x _ G/_)

where x I is the average transmission across one fringe

half-cycle, equal to l/2n, and the factor 2 takes into

account that the peak modulation is only I/2. For the

grating, following reference 7, a Littrow mounting and a

blaze angle of 30 ° are assumed. However, when the

dimension must be allocated to spatial resolution, both

angular subtends will be set by the required spatial reso-

lution and will, therefore, be limited by optical quality

considerations. The Michelson with annular fringes has

an acceptance angle advantage at the cost of spatial infor-

mation. The parallel-fringe DASI family gains the spatial

dimension at the cost of reductions in the acceptance
angle advantage. Put another way, when the interferome-

ter must perform spatial imaging, it must sacrifice part of

its superiority over the grating monochromator. There-

fore, any comparison between interferometers and grat-

ings used in spectrometer and imaging mode must

compare compatible instruments.

The final result may be stated as follows: The

parallel-fringe Sagnac-like interferometers are better

than the grating only in the ratio of their respective "non-

spectral resolution" angular subtends. Using this accep-

tance angle advantage for Michelsons (ref. 4) in forming
comparisons, as has been done for DASI (refs. 1-4),

amounts to comparing apples and oranges.

Claim 2--Optimum Sine Function

The claim that DASI's frequency response is a rect-

angle comes from the fact that all components of the

Fourier transform at the detector are weighted equally. In

Fourier transform terms, systems that do not exactly rep-

licate the input have system responses that are functions
which modify the signal Fourier components. The

weightings on the components for real systems tend to

decrease with larger frequency values of the transform

variable. A constant weighting, or "fiat" frequency

response, is equivalent to convoiving the input function

with a sine function whose width is inversely propor-
tional to the highest value of the frequency. This effect

was discussed in the interferometer section. The greater

the value of the highest Fourier component, the less

smoothing of the data is required and the more detail is
available.

Whereas reproducing fine detail is important, the
instrument sine function, which is not very well behaved,

exhibits the Gibbs phenomenon, or "tinging." Thus, the

high-resolution benefit of having a flat response is bal-

anced by the danger of generating false detail. In
practice, many interferometer spectrometers utilize

apodization windows to avoid the ringing and conse-

quent undesirable false detail (ref. 9).

The need to apodize reduces the fiat response to one

that attenuates the high-frequency detail in just the same

fashion that the triangular response of a grating mono-

chromator smoothes the direct spectrum. A typical
apodization profile is a triangular ramp that goes to zero

at the maximum frequency and is normally applied in

postprocessing of the data. As a result, DASI's (as well

as other Fourier transform spectrometers) realize the

"flat frequency response" at the expense of potentially

erroneous spectrum interpretation.

Claim 3mMultiplex and Other Advantages

This claim includes several smaller elements and one

that appears to be a major claim--the multiplex advan-

tage. Note that in the DASI references the multiplex

advantage was also presented as a multiplex disadvan-

tage. To see how this might be so, one must first under-

stand the origin of the multiplex advantage.

Grating or prism spectrometers sample the spectrum

directly with a noise measurement at each sample point-

time interval. Fourier transform spectrometers, on the
other hand, observe a linear sum of elements of all

portions of the input spectrum. When reconstructed, the

presumably uncorrelated noise samples combine inco-

herently, while the signal adds coherently. This result is

commonly referred to as the Fellgett, or multiplex,

advantage (ref. I 1).

With early detectors and with some modern detec-

tors in certain wavelength regions, detector and amplifier

noise represent the major noise contamination of the

signal. For some time, quantum-noise-limited photo-

multipliers were restricted to the visible and ultraviolet
region of the spectrum. In the case of detector noise inde-

pendent of the incoming signal, there is a multiplex

advantage.

For modern detectors, such as silicon charge coupled
devices (CCD's), HgCdTe-CCD hybrids, and others, the

detector noise is commonly quantum-noise-like, depend-

ing on the square root of the detected photocurrent.

Under these conditions, Kahn (ref. 12) has shown that

the multiplex advantage disappears to be replaced by a

noise dependence on wave number that is different

between the interferometer and the grating spectrometer.



Kahnshowedthatthesignal-to-noiseratioforaninter-
ferometer,whencomparedwith a sequentialgrating
monochromatorin photon-noise-limitedoperation,
favorstheinterferometerin spectralregionswherethe
spectralcontentismorethantwicetheaveragespectral
intensity.Moderntechnologicalimplementationsgive
thegratingmonochromatoranadvantageif a detector
arrayis usedin lieuof a rotatinggratingor movable
detector.Thedetectorarraymakespossiblea signal-to-
noiseincreaseequaltothesquarerootof thenumberof
spectralsamplesandgivesa multichanneladvantage
analogousto the multiplexadvantage.With boththe
DASIandthegratingmonochromatortakingadvantage
of detectorarrays,the resultsof Kahnclearlyapply
equallyto thenonmechanicallyscannedmultipledetec-
torcase.AppendixB presentsthesampleddataversion
of theanalysisin Kahnfor thecasesof monochromatic,
narrowband,andbroadbandsources,as well as for
photon-noise-anddetector-noise-limitedconditions.As
shownin appendixB, thisredistributioncanhavesome
beneficialeffects,dependingon thetypeof spectrum
(linesor continuum)beingobserved.Singlemonochro-
maticlinesyieldahighsignal-to-noiseratiowithnoise
redistributedthroughoutthereconstructedspectrum.For

this case, were it not for other limitations described in

appendix A, as well as in this text, the resolvance would

continue to increase with increasing numbers of detec-

tors without loss of signal-to-noise ratio. For multiple

monochromatic sources, the redistribution of the noise

punishes the signal-to-noise ratio for the weaker lines.

For the case of broadband sources, the redistribution

of noise degrades the signal-to-noise ratio of absorption

features. The signal-to-noise ratio also decreases with an

increased number of detectors sampling the interfero-

gram. Because observing such spectra is a common inter-
ferometer application, the DASI has been rightly
assessed (ref. 4) as having a "multiplex disadvantage" for
this case.

For the case of detectors with D*-like characteris-

tics, the DASI signal-to-noise ratio would show the mul-

tiplex advantage but without the throughput advantage of
the parallel-plate Michelson or Twyman-Green, as noted
earlier.

Concluding Remarks

The digital array scanned interferometer (DASI),

and other proposed equivalents, represent a new wrinkle

in the long-standing contest of superiority between

advocates of grating spectrometers and interferometers.

The very real throughput advantage of Michelson inter-

ferometers over grating systems results from the two-

dimensional acceptance angle versus resolvance inherent

in Michelsons. The grating systems, on the other hand,

are at a disadvantage with respect to this two-

dimensional interferometer acceptance angle. The grat-

ing resolvance is inversely proportional to one of the

grating acceptance angles, while the other dimension is

limited by practical considerations. However, when the

interferometer system is required to yield spatial as well

as spectral information, the interferometer implementa-

tions have acceptance angle limitations similar to the

grating system.

The Michelson can be used to realize the throughput

advantage and simultaneously image by point scanning

using one pixel. To do so, the system must incorporate

the complexity of the spatial scanning system, which

adds mechanical complexity on top of the internal

mechanical scan required. The throughput factor of over

30 represents a factor of only about 6 in improved signal-

to-noise ratio for photon-limited detectors. Moreover,

use of an array with the grating spectrometer limits the

interferometer advantage. Spatial scanning to yield the

spatiospectral information further reduces the interfer-

ometer's relative performance.

The following three claims are detailed in the discus-

sion. Michelson interferometers, which inherently have a

two-dimensional acceptance angle, yield a throughput

advantage. However, DASI's have no great throughput

advantage over grating systems if equal spatial imag-

ing is required of both. Therefore, this claim is not
substantiated.

The flat response of the DASI's transform character-

istic is real. However, the fiat response is accompanied

by the possibility of misinterpretation of the side lobes

that result from such a response in the retrieved spec-

trum. In practice, interferometers often have an instru-
ment response function that is modified to eliminate the

Gibbs phenomena by apodizing or reducing the high-

frequency components. Moreover, the recovered spec-

trum can be subjected to an attenuation function,

depending on the detector size or other acceptance-angle-

dependent effect that must be corrected. Thus, this claim
is substantiated with reservations.

The DASI claims several other benefits, including

the multiplex advantage. As shown previously, DASI has

excellent performance when detecting a handful or so of

monochromatic (line) sources. The signal-to-noise ratio

does not decrease with increasing numbers of detectors

with either photon noise or D*-like detector noise depen-

dence (ignoring some other noise effects that do not scale
in like fashion). However, in the case of broadband

sources, the transform-induced redistribution of noise

punishes the signal-to-noise ratio of absorption features.

A grating does not produce this undesirable effect.

Therefore, with the exception of detector-noise-limited

9



conditionsandsomeline-sourceapplications,thisclaim
isnotsubstantiated.

As to the advantage of detection of transient events,

array-based grating monochromators have this property.

As to superior linearity, the high value for the low-

frequency elements, i.e., the central maxima, of the inter-

ferogram would challenge the linearity of detectors more

than the grating monochromator. The fall-off in higher

frequency components in the interferogram may require

the complexity of gain scaling to fully develop the inter-

ferogram. The claim of known and easily correctable

system errors is certainly not the case in at least one of

the main DASI implementations, the birefringent
Wollaston interferometer. Therefore, this claim is not
substantiated.

NASA Langley Research Center
Hampton, VA 23681-0001
March 6, 1996
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Appendix A

Interferometer Resolution, Defocus, and Source Size Effects

The limitation on resolution for an interferometric spectrometer with finite angular subtense discussed in reference 9

forms the basis for much of the DASI's claimed advantages. For the case in this paper, the results must be modified sig-

nificantly. It is useful to summarize the reference 9 results and then to develop the modified results. The case analyzed in

reference 9 is that of a Twyman-Green version of the Michelson configuration. The results can be more readily illus-

trated with a Michelson system.

In a Michelson, the fringes are concentric rings about the optical axis. The transform scale is nonlinear, even for

small angles, but is easily corrected. Placing an aperture in the focal plane of the exit lens causes a piece, or more, of a

fringe to pass to a detector. As shown in reference 9, the effect is to multiply the transform by a factor:

F(C) = sinc(oLn_12_) (A1)

which has its first zero at Omax = 2rd/__ and where L is the mirror path length. In words, the modulation of the interfero-

gram ceases to exist for a certain combination of solid angle and plate separation. Thus, o must be less than some rea-

sonable fraction of (_max. On the other hand, the maximum range of the transform variable determines the ultimate
resolution for the interferometer.

8o = (l/lmax)(l - f_/2X)

With 9_ = O/_, the resolvance can be written as

_R = ( 1 - f2/2rc)2rc/_

or for a small solid angle,

(A2)

(A3)

= 2rc/f_ (A4)

This final result serves as the underpinning for the major claims for DASI.

For the case of Sagnac or other interferometers that produce linear parallel fringes, the finite aperture or detector

subtense causes an analogous effect. Assume that the source is uniform and that the detector has an angular width ot x

in length. The signal detected will be the integrated value over the detector (ignoring the constant term that is an addi-

tional signal):

0+(_t/2)

S(O) = _ dO_d_S(o, O)cos[2no( sinO)l]do (A5)

0-(et/2)

S( O) = o_[ sin(noLlo)l(rco_lo) ]{ _S( o)cos[ 2xosin( O)l]da } (A6)

The first zero of the sinc function is at o = 11o_1.After inversion, the spectrum will be multiplied by the sinc func-

tion, which forces the spectrum to zero at the point a = l/or/.

There is also a maximum transform variable that, assuming 0 to be small, is 01. Analogous to the Michelson case
shown, the end result is to convoive the inverted interferograrn with a sinc function whose first zero 1/201 sets the ulti-

mate resolution for the spectrum. The relationship between angle and resolvance then becomes

= 201a

= 20l/o_1 (A7)

9_ = n/cx (A8)

or, with 0 no larger than rd2, becomes

11



Pickingupthe13dimension,theresultsfortheacceptanceangleversusresolutionare

= nfi/9_

and for the 6tendue results are

(A9)

A_ = nct[iA (A10)

AD = rcAfJl_ (A11)

This final very important result shows that modifying the interferometer to have parallel fringes by using a Sagnac
with fringes localized at infinity, with a Michelson with wedged mirrors with fringes localized in the wedge, or a
Wollaston polarization interferometer produces the same effect: The acceptance angle is inverse to the resolvance.

Defocus Effects

In a Michelson interferometer with tilted mirrors, which gives a set of linear fringes, a defect of focus causes a limi-

tation on speclxal resolution with increased aperture. As shown in figure A1, mirrors M1 and M2 tilted at angle O would

have fringes localized at the surface of M2 for on-axis rays that represent a point source on the axis. If the source is

extended to an angular dimension W, the source half-angle, then the reflected ray pair seems to come from a common

point that is offset in AX and AY as shown. The following equations determine the offset values:

AX

AY

N

N

Figure A t. Definitions of defocus for air wedge interferometer.

d = L tanO

m/sin(180-2W) = (d/cosq')/sin20

From the shaded triangle in figure A1,

AY = mcos(_-20)

AX = msin(W-20)

(A12)

(A13)

(A14)

(AI5)
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Fromtheseequations,wecansolveforAXandAYintermsof L (the interferogram length from the mirror apex), (9,

and W, giving

AX = L tanOcsc2OsecWsin2Wsin(W- 219)

AY = L tanOcsc2OsecWsin2WcosQP-219)

Using the small angle approximation:

(A16)

AX = LW2_ _ (Ai7)

AY L_ J

From the preceding equations, one can see that the greatest delta error is AY, but this finding is somewhat mislead-

ing. The AY or the defocus term is not, in itself, the critical factor but rather the blur diameter in the focus plane M2 that
results from the defocus. This diameter is the defocus times the apex angle 219, giving

Blur diameterdueto defocus = 2LW19 = AXsample (AI8)

The blur diameter in turn sets the sample interval AXsample and detector size in a detector array (along with the dif-
fraction and geometric blurs of the optics which are ignored here). The sample interval and the total length of a two-

sided interferogram L 0 are related to the spectral resolution _ by

= L0/AXsample = 1/2W19 (L 0 = L) (AI9)

Then the allowable source subtense is proportional to the inverse of the spectral resolution:

W o_ 1/_ (A20)

Laterally Displaced Source and Acceptance Angle Limitations

A fixed source splitting (laterally displaced) in a Sagnac or wedged Twyman-Green coupled with increasing source
size causes an effect at the detector plane equivalent to integrating over the detector acceptance angle. This effect comes

from a source width phase shift in the collimated light reaching the detector plane. The separation of the coherent

twinned rays yields the interferogram as expected, but contributions from distributed pairs across the source incur addi-

tional phase shift from the increasing total path length to a particular point on the detector plane. This phenomenon,

essentially an obliquity effect, causes the "phase zero" of the interferogram to shift linearly with increasing acceptance

angle.

For a lateral displacement interferometer, such as the Sagnac, the effects of an increasing source subtense can be

calculated. The apparent source displacement distance d and the source size D can be related to the angles between the

plane waves (O and O') exiting from the monochromator collimating lens, as shown in figure A2. Using the summation

of two plane waves, E 1 and E 2, the intensity of the interferogram I is

1 = (E 1 + E2)(E 1 + E2) (A21)

where E = AOeik'r' vector intensity is

I = 2A_{ ! + cos[k(xi x + yiy)][(cos19i x + sin19iy)

- (cos19'i x + sin19'iy) ] } (A22)

13
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Detectors

Figure A2. Definitions of aperture function calculation.

and where, from figure A2 and other substitutions

O = tan -1 [D - (dl2)]lF = [D - (d/2)]IF (A23a)

O = tan-l[D + (dl2)]lF = [D + (d/2)]/F (A23b)

k = 27tt_ (A24)

cosO - cosO' -- (O '2 - O2)/2 = Dd/F 2 (A25a)

sinO - sin®' = (19 - O') = -d/F (A25b)

Integrating over the source size D from zero to D O and fixing x at the detector plane distance X0, we get

l(x,y ) = 2A 0 + 2AofcOs[(kDdlF2)x- (kd/F)y]_D (A26)

l(Do,Xo,Y ) = 2AoD 0 { (1 + sinc(DodkXo/2F 2)

x cos [ (kd/2 F 2) (-DoX 0 + 2 Fy) ] } (A27)

The preceding equation states that the interferogram is limited by a sinc function that is dependent on not only

the source apparent displacement but also the source size. The first zero is at D O = F21adXo or, in angular terms,

O s = FladX o. If X 0 = 2F, the zero of the sinc function can be written as ama x = l/(2Osd), and the source subtense limits

the interferogram visibility and maximum upper usable wave number. The sinc function plays a role similar to the

finite aperture of the detector elements thereby causing a linear inverse relationship between acceptance angle and
resolvance 9_.
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Appendix B

Signal-to-Noise Relationships

The multiplex advantage for Sagnac and Wollaston prism versions of DASI's can, in reality, be thought of as disad-

vantages when compared with moveable mirror interferometers or grating instruments. This rationale results from the

fact that the DASI's share the incoming radiation with all the N elemental detectors. The signal-to-noise ratio can then be

recovered in the inversion process because the signal to noise will increase. However, it increases only as the square root
of the number of detectors. If the signal drops below the detector-amplifier inherent noise and away from the photon-

noise limit, the residual influence of the nonphoton noise more or less punishes the recovery of the signal-to-noise ratio.

In view of that information, the results from Kahn now can be applied to show that the transform instruments may or

may not have an advantage over sequential grating instruments. As noted in reference 12, in the photon-noise-dominated

regime, the sequential transform instrument has no general advantage over a sequentially scanned grating instrument, all

other things being equal, including throughput. Spectra with great fluctuation (over twice the average value) favor the

transform instrument, whereas more benign spectra favor the grating instrument.

For detector array grating instruments, the results of Kahn (ref. 12) indicate that the grating instruments would be

superior to sequentially transform instruments by the square root of the number of samples in the imaging cases of inter-

est here. This result amplifies the comment in reference 4 concerning the multiplex disadvantage of DASI's, which had

been at odds with other claims for a multiplex advantage.

The relationship of noise generated during the data-taking process was presented in Kahn (ref. 12), but it is worth

deriving this result in the array case. Assume that the detectors are in the photon-noise-limited case, yielding Poisson
noise uncorrelated detector to detector. The detection process consists of integrating generated charges arising from inci-

dent photons. Thc signal-generating process can be written as having an average value and a standard deviation around
that mean.

With unity quantum efficiency and in unit time, write the detected signal charge as

S(K) = J_0 S(_)[l + cos(2_Kt_)]d_ (BI)

The inversion process involves multiplying by cosines of various frequencies, summing over the frequency sample

points, and scaling:

g=Kma x

S'(t_) = Z S(K)cos(2nKo) (B2)

K=0

Inserting the expression for the transformed spectrum gives

S'(o) =

g=gma x

_., ffo S(l.t)t l + c°s(2rcK_)]d_c°s(2_Ka)
K=0

(B3)

S'(C) = J_0S(p.)l/2Z{ cos[2xK(la + C)] + cosl2xK(la - _)] }apt (B4)

Rearranging and using the relation

1 +x+x2+x 3 +...+x n= (1-xn)/(l-x)
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gives

feoo

× sin [n_ik(N + 1)(p. - o)]/sin [xSk(_t - o)] }

+ Equivalent function of (It + o)) (B5)

where Kma x is now N, the number of transform samples, times the smallest interval 8k.

IfN is reasonably large, the integrand exists only around o = la, scaled by the peak value of the (sinx)/x term (N + 1)
and within a width of 1/_k(N + 1).

S'(o) = (1/2_k)S(6)

Thus, the inversion process gives the input spectrum, modified by a scale factor of (l/2_k). The constant term in the

interferogram yields a similar term, except that it exists for o = 0 and has a value equal to the integral of the spectrum

over all wave numbers. This term is also a constant. Note that this term represents the average value for the spectrum and
has the effect of generating noise.

Under the assumption that the detector noise is a Poisson process, as would be the case for photon-noise-limited per-

formance, the noise can be calculated. The analysis can be simplified by noting that the noise in any element of the sam-

pied spectrum is assumed to be independent from the other spectrum elements. Thus, when calculating the variance,
only signals from the same spectral element contribute:

(S2n(C)) = (SF) 2(ZZs(k)s(k')cos(2rck_)cos(2rck'o)) (B6)

S 2 (SF)2ZS(k)cos2(2rtka)< .(a)> = (B7)

Inserting for S(k) and remembering to carry the constant term because it represents the background signal results in

Expanding the integral and expressing the cosine products as sum and difference frequencies, as done in equa-
tion (B8), yields

(Sn(_)) = 2NSk 2 dktS(kt) + 28k 2 dAtS(At) A(t_) + 8kS(O) + [8kS(2_)/2] + [8kS(-20)/2] (B9)

where A(c) is a delta function around zero wave number (dc). The term affecting the reconstructed spectrum is the first
and gives a root mean squared (RMS) of

1/2

2 l/2 l/2_)k[f 1 (BI0)(Sn(t_)) = (2N) dAtS(bt )

Multiplying and dividing by the effective wave-number interval Ao in the integrand allows the noise to be expressed
with respect to an average spectrum:

2 1/2 1/2 I/2 I/2- 1/2

(Sn(t_)) = 2 SavgN _SkAo (B11)

Remember that N3k is the wave-number span whose reciprocal is the minimum resolution interval i5o. Therefore, the
signal-to-noise ratio can be written:

S(t_)/ (Sn2(o)) 1/2 = S(t_)_o/ d2SavgAtl] N (B12)
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NotingthatthehighestvalueforAt_is ll_k andfor_icis 1/N_k,thefinalresultisobtained:

S/N = S(_)_5_/_g_C (B13)

Three cases follow to illustrate these results: (1) a monochromatic source, such as a laser, (2) a broadband source

typical of black bodies either viewed directly or in reflection, and (3) a detector-noise-limited case.

Monochromatic Source

Let S(c) = U0(_0) with _0 < Gmax" Then the transform can be written:

S(ki) = A{ [cos(21tkiGo)sin(rcAao)/ItAt_o] + 1} (B14)

Invert by using

kmax

S(t_) = 2_k _a S(ki)c°s(2_kiG)

ki=0

With kmax = N_k, the detector subtended angle A, and k i = i_)k, the inversion can be written:

S(O) = 2_kA(Z 1/2{ cos[2rci_k(o- G0)]

+ cos[2_xi_k(G + _0)] }

+ y__ cos (2rcirkG)) (B15)

S(G) = 2_SkA({ cos [_Nrk(_ - G0) ] sin [_k(N + 1)(G - o0)]/sin [rt_k(a - a0) ] }

+ Equivalent function of (o + G0)) (BIr)

At o = G0, S(G) = (N + 1)_ikA and has a full width of l/(Nfik) defined by first zeros of the function. The area of the

function is approximately A from the height-width product equivalent to the unit area of the delta function monochro-

matic source, but reduced by the detector angular subtense.

The signal-to-noise ratio from equation (B 13) is

SIN = (N + 1)_k_G 1/2

= 1/(2_ia) I/2 (B17)

From this result, it appears that a monochromatic source has a signal-to-noise ratio that is independent of the angular
subtense of the individual detectors.

Broadband Source

Assuming that a broadband source signal-to-noise characteristic can be illustrated by a constant value of spectral

irradiance, the result from equation (B 13) can be used to yield

S/N = ASo/[ 2 l/2(SoAt_rna x) 1/2N 1/26k 1 (B18)
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BecauseJ_0S0_G/Gmax = S O (after identifying A as 8k), equation (BI8) can be simplified:

S/N = ASo/[21/2(SoA) I/2NI/Zsk lr21

= SoAI/2(2SoN_k) I/2

S/N = So(AN_k ) l/2112(SO) l/2NSk]

= S08kSc/(2So_t_k ) 1/2

(BI9)

(B20)

Detector-Noise-Limited Case

Let the dominant noise source be from the photodetector, and let the photodetector have a noise proportional to its
area. Such a detector will have a noise charge of no = no*(Sk) 1/2, which is dependent only on the square root of its area.

It is assumed that the length of the detector can be made as long as necessary and does not vary as the acceptance angle
15kis varied. Under these conditions, the signal-to-noise ratio can be written:

SIN = S(c)A/(2N) l/28kno

= S(t_)A/(2 l/2no_kN/N 1/2)

= S((l)A/[21/2no*_kl/2/(Nl/2_t_) ]

= S(o)ASo/(2no,28k2/NSk) 1/2 (B21)

or with A = 8k,

2 1/2
S/N = S(a)Sa/(2no* 8c) (B22)

Therefore, the signal-to-noise ratio is independent of the number of detectors or detector angular subtense, as long as the
minimum resolution Fx_= (N + 1)Sk remains constant.
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